χ(pi,∣vi⟩)=H(∑ipi∣vi⟩⟨vi∣
Allowed to send p1,p2,p3,...,pk.
Capacity is pi,pimaxχ=pi,pimaxχ−∑ipiH(pi)
block length: n
capacity: C
pick 2n(c−ϵ) random codewords with letter chosen with probability maximizing H(B)−H(B∣A) .
Steps:
Bob gets codeword with noise
Find the codeword most likely to have been the input words as n→∞,∈→0 .
How about quantum case?
Upper bound:
Alice sends pi to Bob
Will show that for single state decoding, Shannon information provided by any measurement of Bob's < Holevo's information χ .
Alice's record of pi
♡♡ ∣0⟩
Brackets
\left\langle \frac{1}{2} \middle| 1 \right\rangle
⟨211⟩
Fractions and brackets
\left( \begin{array}{cc} 2\tau & 7\phi-frac5{12} \\
3\psi & \frac{\pi}8 \end{array} \right)
\left( \begin{array}{c} x \\ y \end{array} \right)
\mbox{~and~} \left[ \begin{array}{cc|r}
3 & 4 & 5 \\ 1 & 3 & 729 \end{array} \right]
Function definition
f(z) = \left\{ \begin{array}{rcl}
\overline{\overline{z^2}+\cos z} & \mbox{for}
& |z|<3 \\ 0 & \mbox{for} & 3\leq|z|\leq5 \\
\sin\overline{z} & \mbox{for} & |z|>5
\end{array}\right.
Diagrams
\begin{matrix}
&& \Bbb Q(\sqrt{2},i) & \\
&\huge\diagup & \huge| & \huge\diagdown \\
\Bbb Q(\sqrt{2}) & & \Bbb Q(i\sqrt{2})& & \Bbb Q(i)\\
&\huge\diagdown & \huge| & \huge\diagup \\
&&\Bbb Q
\end{matrix}
Q(2)╱╲Q(2,i)∣Q(i2)∣Q╲╱Q(i)
Equations align
\eqalign{
(a+b)^2 &= (a+b)(a+b) \\
&= a^2 + ab + ba + b^2 \\
&= a^2 + 2ab + b^2
}
Hat
\hat\imath
\hat\jmath
\hat ab
\hat{ab}
^^a^bab^
Matrices
Type 1
\begin{matrix}
\hline
x_{11} & x_{12} \\
x_{21} & x_{22} \strut \\
\hdashline
x_{31} & x_{32} \strut
\end{matrix}
Type 2
A = \pmatrix{
a_{11} & a_{12} & \ldots & a_{1n} \cr
a_{21} & a_{22} & \ldots & a_{2n} \cr
\vdots & \vdots & \ddots & \vdots \cr
a_{m1} & a_{m2} & \ldots & a_{mn} \cr
}
Limits
∑k=1nak
References
A complete list is available at https://www.onemathematicalcat.org/MathJaxDocumentation/TeXSyntax.htm
Quantum operations
In general, what are the legal transformations ρ→ε(ρ) ?
Def: Operation ε is a valid quantum op iff
A1 Tr(ε(ρ))=1
A2 ε is convex and linear. ε(∑kPkρk)=∑kPkε(ρk)
A3 εis completely positive.
a. if ρ≥0 then ε(ρ)≥0
b. (IRεQ)(ρRQ)≥0∀ρAB≥0
Why A3b?
consider