Quantum - Holevo's theorem
Last updated
Last updated
Allowed to send
Capacity is
block length: n
capacity: C
pick random codewords with letter chosen with probability maximizing .
Steps:
Alice sends Bob codeword
Bob gets codeword with noise
Find the codeword most likely to have been the input words as .
Upper bound:
Alice sends to Bob
Will show that for single state decoding, Shannon information provided by any measurement of Bob's Holevo's information .
Alice's record of
|i \rangle \longrightarrow p_i \buildrel Bob \over \longrightarrow | b_j\rangle
\left( \begin{array}{cc} 2\tau & 7\phi-frac5{12} \\ 3\psi & \frac{\pi}8 \end{array} \right) \left( \begin{array}{c} x \\ y \end{array} \right) \mbox{~and~} \left[ \begin{array}{cc|r} 3 & 4 & 5 \\ 1 & 3 & 729 \end{array} \right]
f(z) = \left\{ \begin{array}{rcl} \overline{\overline{z^2}+\cos z} & \mbox{for} & |z|<3 \\ 0 & \mbox{for} & 3\leq|z|\leq5 \\ \sin\overline{z} & \mbox{for} & |z|>5 \end{array}\right.
\eqalign{ (a+b)^2 &= (a+b)(a+b) \\ &= a^2 + ab + ba + b^2 \\ &= a^2 + 2ab + b^2 }
\begin{matrix} \hline x_{11} & x_{12} \\ x_{21} & x_{22} \strut \\ \hdashline x_{31} & x_{32} \strut \end{matrix}
A = \pmatrix{ a_{11} & a_{12} & \ldots & a_{1n} \cr a_{21} & a_{22} & \ldots & a_{2n} \cr \vdots & \vdots & \ddots & \vdots \cr a_{m1} & a_{m2} & \ldots & a_{mn} \cr }
A complete list is available at https://www.onemathematicalcat.org/MathJaxDocumentation/TeXSyntax.htm
Why A3b?
consider \varepsilon: \matrix{ a & b \cr c & d } \longrightarrow \pmatrix{ a & c \cr b & d }
\sum_{jk} C_{jk} | j k | \buildrel \varepsilon \over \rightarrow \sum_{jk} C_{jk} | k j |
In general, what are the legal transformations ?
Def: Operation is a valid quantum op iff
A1
A2 is convex and linear.
A3 is completely positive.
a. if then
b.